LogoLogo
Have questions?📞 Speak with a specialist.📅 Book a demo now.
  • Welcome
  • INTRODUCTION
    • What Is Aizen?
    • Aizen Platform Interfaces
    • Typical ML Workflow
    • Datasets and Features
    • Resources and GPUs
    • LLM Operations
    • Glossary
  • INSTALLATION
    • Setting Up Your Environment
      • Hardware Requirements
      • Deploying Kubernetes On Prem
      • Deploying Kubernetes on AWS
      • Deploying Kubernetes on GCP
        • GCP and S3 API Interoperability
        • Provisioning the Cloud Service Mesh
        • Installing Ingress Gateways with Istio
      • Deploying Kubernetes on Azure
        • Setting Up Azure Blob Storage
    • Installing Aizen
      • Software Requirements
      • Installing the Infrastructure Components
      • Installing the Core Components
      • Virtual Services and Gateways Command Script (GCP)
      • Helpful Deployment Commands
    • Installing Aizen Remote Components
      • Static Remote Deployment
      • Dynamic Remote Deployment
    • Installing Optional Components
      • MinIO
      • OpenLDAP
      • OpenEBS Operator
      • NGINX Ingress Controller
      • Airbyte
  • GETTING STARTED
    • Managing Users and Roles
      • Aizen Security
      • Adding Users
      • Updating Users
      • Listing Users and Roles
      • Granting or Revoking Roles
      • Deleting Users
    • Accessing the Aizen Platform
    • Using the Aizen Jupyter Console
  • MANAGING ML WORKFLOWS
    • ML Workflow
    • Configuring Data Sources
    • Configuring Data Sinks
    • Creating Training Datasets
    • Performing ML Data Analysis
    • Training an ML Model
    • Adding Real-Time Data Sources
    • Serving an ML Model
    • Training and Serving Custom ML Models
  • MANAGING LLM WORKFLOWS
    • LLM Workflow
    • Configuring Data Sources
    • Creating Training Datasets for LLMs
    • Fine-Tuning an LLM
    • Serving an LLM
    • Adding Cloud Providers
    • Configuring Vector Stores
    • Running AI Agents
  • Notebook Commands Reference
    • Notebook Commands
  • SYSTEM CONFIGURATION COMMANDS
    • License Commands
      • check license
      • install license
    • Authorization Commands
      • add users
      • alter users
      • list users
      • grant role
      • list roles
      • revoke role
      • delete users
    • Cloud Provider Commands
      • add cloudprovider
      • list cloudproviders
      • list filesystems
      • list instancetypes
      • status instance
      • list instance
      • list instances
      • delete cloudprovider
    • Project Commands
      • create project
      • alter project
      • exportconfig project
      • importconfig project
      • list projects
      • show project
      • set project
      • listconfig all
      • status all
      • stop all
      • delete project
      • shutdown aizen
    • File Commands
      • install credentials
      • list credentials
      • delete credentials
      • install preprocessor
  • MODEL BUILDING COMMANDS
    • Data Source Commands
      • configure datasource
      • describe datasource
      • listconfig datasources
      • delete datasource
    • Data Sink Commands
      • configure datasink
      • describe datasink
      • listconfig datasinks
      • alter datasink
      • start datasink
      • status datasink
      • stop datasink
      • list datasinks
      • display datasink
      • delete datasink
    • Dataset Commands
      • configure dataset
      • describe dataset
      • listconfig datasets
      • exportconfig dataset
      • importconfig dataset
      • start dataset
      • status dataset
      • stop dataset
      • list datasets
      • display dataset
      • export dataset
      • import dataset
      • delete dataset
    • Data Analysis Commands
      • loader
      • show stats
      • show datatypes
      • show data
      • show unique
      • count rows
      • count missingvalues
      • plot
      • run analysis
      • run pca
      • filter dataframe
      • list dataframes
      • set dataframe
      • save dataframe
    • Training Commands
      • configure training
      • describe training
      • listconfig trainings
      • start training
      • status training
      • list trainings
      • list tensorboard
      • start tensorboard
      • stop tensorboard
      • stop training
      • restart training
      • delete training
      • list mlflow
      • save embedding
      • list trained-models
      • list trained-model
      • export trained-model
      • import trained-model
      • delete trained-model
      • register model
      • update model
      • list registered-models
      • list registered-model
  • MODEL SERVING COMMANDS
    • Resource Commands
      • configure resource
      • describe resource
      • listconfig resources
      • alter resource
      • delete resource
    • Prediction Commands
      • configure prediction
      • describe prediction
      • listconfig predictions
      • start prediction
      • status prediction
      • test prediction
      • list predictions
      • stop prediction
      • list prediction-logs
      • display prediction-log
      • delete prediction
    • Data Report Commands
      • configure datareport
      • describe datareport
      • listconfig datareports
      • start datareport
      • list data-quality
      • list data-drift
      • list target-drift
      • status data-quality
      • display data-quality
      • status data-drift
      • display data-drift
      • status target-drift
      • display target-drift
      • delete datareport
    • Runtime Commands
      • configure runtime
      • describe runtime
      • listconfig runtimes
      • start runtime
      • status runtime
      • stop runtime
      • delete runtime
  • LLM AND EMBEDDINGS COMMANDS
    • LLM Commands
      • configure llm
      • listconfig llms
      • describe llm
      • start llm
      • status llm
      • stop llm
      • delete llm
    • Vector Store Commands
      • configure vectorstore
      • describe vectorstore
      • listconfig vectorstores
      • start vectorstore
      • status vectorstore
      • stop vectorstore
      • delete vectorstore
    • LLM Application Commands
      • configure llmapp
      • describe llmapp
      • listconfig llmapps
      • start llmapp
      • status llmapp
      • stop llmapp
      • delete llmapp
  • TROUBLESHOOTING
    • Installation Issues
Powered by GitBook

© 2025 Aizen Corporation

On this page
  1. MANAGING LLM WORKFLOWS

Running AI Agents

Aizen supports deploying LLM applications, such as AI agents. The AI agents may interact with LLMs, or they may interact with embeddings models served on Aizen or on a non-Aizen provider, such as OpenAI. The AI agents may also interact with vector stores for RAG applications.

To configure an AI agent on Aizen, follow these steps:

  1. Log in to the Aizen Jupyter console. See Using the Aizen Jupyter Console.

  2. Create an ML project if you have not already done so or set the current working project.

    create project <project name>

    or

    set project <project name>
  3. Configure the AI agent by running the configure llmapp command:

    configure llmapp
  4. In the notebook, you will be guided through a template form with boxes and drop-down lists that you can complete to configure the AI Agent. Enter the application's name and description. Any text that you enter in the app or tool description boxes will be appended to the system prompt. Select a provider name for the LLM, and select the LLM model name. Select the tools to be added to the AI agent, and specify the tool-specific parameters. Supported tool templates are as follows:

    • RAG Query: a tool that interfaces with a document Store ID from a vector store. Textual queries can be sent to the vector store to retrieve relevant chunks from documents within a Store ID.

    • REST Query: a tool that interfaces with a REST endpoint URL. The REST endpoint must provide an OpenAPI specification that is adequately annotated. Textual queries are used to generate function calls with appropriate parameter values, which are then sent to the REST endpoint via HTTP Get or Post methods.

    • SQL Query: a tool that interfaces with a SQL table. The SQL table must be a configured data source or dataset. Textual queries are used to generate SQL query statements, which are then sent to a SQL engine.

    • Web Search: a tool that searches the web for relevant information. Textual queries can be sent to a web search engine.

    • Custom Functions: a generic Python module with custom Pydantic functions. Functions and parameters must be adequately annotated. Textual queries are used to generate function calls with appropriate parameter values, which result in direct calls to the Python module.

  5. Run the AI agent using the start llmapp command. This command will schedule a job to deploy the LLM application. Optionally, you can configure resources for the job by running the configure resource command. If you do not configure resources, default resource settings will be applied.

    configure resource
    start llmapp <llmapp name>
  6. Check the status of the LLM application's deployment job and obtain serving URLs:

    status llmapp <llmapp name>
  7. The base URL in the status output supports a REST API that lists the AI agents that are currently being served. The endpoint URL in the status output supports AI agent operations, such as creating sessions and chat requests. Both of these URLs provide the FastAPI docs, Redoc and OpenAPI paths.

  8. Use the endpoint URL to create sessions and chat with the AI agent.

PreviousConfiguring Vector StoresNextNotebook Commands

Last updated 3 months ago